Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 19(3): e2300612, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38472102

RESUMO

Schizochytrium sp. is a heterotrophic microorganism capable of accumulating polyunsaturated fatty acids and has achieved industrial production of docosahexaenoic acid (DHA). It also has the potential for eicosapentaenoic acid (EPA) production. In this study, it was found that the cell growth, lipid synthesis and fatty acid composition of Schizochytrium sp. were significantly affected by the level of cobalamin in the medium, especially with regard to the content of EPA in the fatty acids. The content of EPA in the fatty acids increased 17.91 times, reaching 12.00%, but cell growth and lipid synthesis were significantly inhibited under cobalamin deficiency. The response mechanism for this phenomenon was revealed through combined lipidomic and transcriptomic analysis. Although cell growth was inhibited under cobalamin deficiency, the genes encoding key enzymes in central carbon metabolism were still up-regulated to provide precursors (Acetyl-CoA) and reducing power (NADPH) for the synthesis and accumulation of fatty acids. Moreover, the main lipid subclasses observed during cobalamin deficiency were glycerolipids (including glycerophospholipids), with EPA primarily distributed in them. The genes involved in the biosynthesis of these lipid subclasses were significantly up-regulated, such as the key enzymes in the Kennedy pathway for the synthesis of triglycerides. Thus, this study provided insights into the specific response of Schizochytrium sp. to cobalamin deficiency and identified a subset of new genes that can be engineered for modification.


Assuntos
Ácido Eicosapentaenoico , Lipidômica , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos , Perfilação da Expressão Gênica , Vitamina B 12
2.
Int Immunopharmacol ; 130: 111676, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38367465

RESUMO

ß-arrestin-1 has been demonstrated to participate in the regulation of inflammatory reactions in several diseases. Thus, this study aimed to investigate the role of macrophage ß-arrestin-1 in the pathogenesis and progression of ulcerative colitis (UC). A myeloid ß-arrestin-1 conditional knockout mouse model was generated to explore the role of macrophage ß-arrestin-1. DSS was employed for the establishment of an ulcerative colitis mouse model, using TNF-α as an inflammatory stressor in vitro. The expression level of ß-arrestin-1 was detected via western blot and immunofluorescence assays, whilst disease severity was evaluated by clinical score and H&E staining in the DSS-induced colitis model. In the in vitro experiments, the levels of inflammatory cytokines were examined using real-time PCR. NF-κB activation was detected through the double luciferase reporter system, western blot, and electrophoretic mobility shift assay (EMSA). BAY11-7082 was used to inhibit NF-κB activation. Our results exposed that the level of ß-arrestin-1 was increased in monocytes/macrophages derived from DSS-induced colitis mice or under the TNF-α challenge. Moreover, conditionally knocking out the expression of myeloid ß-arrestin-1 alleviated disease severity, while knocking out the expression of ß-arrestin-1 decreased the levels of inflammatory cytokines. Additionally, NF-κB was identified as a central regulatory element of ß-arrestin-1 promoter, and using BAY11-7082 to inhibit NF-κB activation lowered the level of ß-arrestin-1 under TNF-α challenge. ß-arrestin-1 led to the activation of the NF-κB signaling pathway by enhancing binding to IκBα and IKK under the TNF-α challenge. Taken together, our findings demonstrated macrophage ß-arrestin-1 contributes to the deterioration of DSS-induced colitis through the interaction with NF-κB signaling, thus highlighting a novel target for the treatment of UC.


Assuntos
Colite Ulcerativa , Colite , Nitrilas , Sulfonas , Animais , Camundongos , NF-kappa B/metabolismo , Colite Ulcerativa/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , beta-Arrestina 1/uso terapêutico , Transdução de Sinais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Citocinas/metabolismo , Macrófagos/metabolismo , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
Int Immunopharmacol ; 125(Pt A): 111085, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866313

RESUMO

Autophagy in atherosclerotic plaque macrophage contributes to the alleviation of atherosclerosis through the promotion of lipid metabolism. ß-arrestins are multifunctional proteins participating various kinds of cellular signaling pathways. Here we aimed to determine the role of ß-arrestin-1, an important member of ß-arrestin family, in atherosclerosis, and whether autophagy was involved in this process. ApoE-/-ß-arrestin-1fl/flLysM-Cre mice were created through bone marrow transplantation for the atherosclerosis model with conditional myeloid knocking out ß-arrestin-1. Bone marrow-derived macrophages (BMDMs) were used for the in vitro studies. Oil red O staining was used to detect the lesional area. F4/80, Masson trichrome and picro-Sirius red staining were applied for the determination of plaque stability. Real-time PCR was used for the detection of levels of lipid metabolism-related receptors. Electron microscopy and tandem fluorescent mRFP-GFP-LC3 plasmid was applied to test autophagy level. We found that ß-arrestin-1 was highly increased in expression in plaque macrophage on the occurrence of atherosclerosis. Conditional myeloid knocking out ß-arrestin-1 largely promotes plaque formation and vulnerability. In murine macrophage with lipid loading, knocking down ß-arrestin-1 enhanced foam cell formation and levels of plasma and cellular cholesterol, while overexpressing ß-arrestin-1 led to the opposite effects. The alleviative effects induced by macrophage ß-arrestin-1 in atherosclerosis were involved in autophagy, based on the reduction of autophagy level with the knocking down of macrophage ß-arrestin-1 and administration of autophagy inhibitors which largely attenuated the decreasing effect on foam cell formation. Our results demonstrated for the first time that macrophage ß-arrestin-1 protected against atherosclerosis through the induction of autophagy.


Assuntos
Aterosclerose , Placa Aterosclerótica , beta-Arrestina 1 , Animais , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Autofagia , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Macrófagos/metabolismo
4.
J Fungi (Basel) ; 9(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37504682

RESUMO

Utilizing mycoremediation is an important direction for managing heavy metal pollution. Zn2+ pollution has gradually become apparent, but there are few reports about its pollution remediation. Here, the Zn2+ remediation potential of Paraisaria dubia, an anamorph of the entomopathogenic fungus Ophiocordyceps gracilis, was explored. There was 60% Zn2+ removed by Paraisaria dubia mycelia from a Zn2+-contaminated medium. To reveal the Zn2+ tolerance mechanism of Paraisaria dubia, transcriptomic and metabolomic were executed. Results showed that Zn2+ caused a series of stress responses, such as energy metabolism inhibition, oxidative stress, antioxidant defense system disruption, autophagy obstruction, and DNA damage. Moreover, metabolomic analyses showed that the biosynthesis of some metabolites was affected against Zn2+ stress. In order to improve the tolerance to Zn2+ stress, the metabolic mechanism of metal ion transport, extracellular polysaccharides (EPS) synthesis, and microcycle conidiation were activated in P. dubia. Remarkably, the formation of microcycle conidiation may be triggered by reactive oxygen species (ROS) and mitogen-activated protein kinase (MAPK) signaling pathways. This study supplemented the gap of the Zn2+ resistance mechanism of Paraisaria dubia and provided a reference for the application of Paraisaria dubia in the bioremediation of heavy metals pollution.

5.
Dalton Trans ; 52(10): 2999-3005, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36790336

RESUMO

Pursuits of new types of Pb-free heterometallic halides adequate for photovoltaic applications are still urgent but challenging. In this study, by using in situ-produced [(Me)2-(DABCO)]2+ (DABCO = 1,4-diazabicyclo[2.2.2]octane; Me = methyl) cations as structure-directing agents, we successfully constructed a non-perovskite copper iodobismuthate hybrid, namely [(Me)2-(DABCO)]2Cu2Bi2I12 (1), which features discrete [Cu2Bi2I12]4- anionic moieties formed by the building units of [CuI4] tetrahedra and [BiI6] octahedra. UV-Vis diffuse reflectance analyses showed that compound 1 possesses semiconductive behaviors with a narrow optical bandgap of 1.80 eV. More importantly, it exhibits excellent photoelectric switching abilities, and its photocurrent density (2.30 µA cm-2) far exceeds those of some high-performance halide-based counterparts. Different from many heterometallic analogues, noteworthily, it also has dispersive band structure and strong electronic coupling near the Fermi level, resulting in a material with small effective masses that may be responsible for the good photoelectricity. This study may offer new guidance for the design and synthesis of eco-friendly heterometallic halides with unique structures and desirable properties.

6.
Front Pharmacol ; 13: 933732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160450

RESUMO

Ferritinophagy is a type of autophagy mediated by nuclear receptor activator 4 (NCOA4), which plays a role in inducing ferroptosis by regulating iron homeostasis and producing reactive oxygen species in cells. Under physiological conditions, ferritinophagy maintains the stability of intracellular iron by regulating the release of free iron. Studies have demonstrated that ferritinophagy is necessary to induce ferroptosis; however, under pathological conditions, excessive ferritinophagy results in the release of free iron in large quantities, which leads to lipid peroxidation and iron-dependent cell death, known as ferroptosis. Ferritinophagy has become an area of interest in recent years. We here in review the mechanism of ferritinophagy and its association with ferroptosis and various diseases to provide a reference for future clinical and scientific studies.

7.
Inorg Chem ; 61(25): 9808-9815, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35687762

RESUMO

Employing in situ-generated metal complexes as structural decorating agents, we, for the first time, isolated two [Co(bipy)3]3+-templated silver halobismuthate hybrids, namely [Co(bipy)3]2Ag4Bi2X16 (X = Br (1), I (2); bipy = 2,2'-bipyridine). Compounds 1 and 2 belong to the isomorphic phrases and exhibit the nonperovskite structures characteristic of the discrete [Ag4Bi2X16]6- anions. UV-vis absorption spectra analyses showed that the optical band gaps of compounds 1 and 2 are 2.40 and 1.95 eV, respectively, implying the visible light responding semiconductor properties. Moreover, under the alternate light illumination, the title compounds exhibited "on/off" photocurrent behaviors, with high photocurrent densities comparable to many metal halide hybrids. Presented in this work also involved the Hirshfeld surface analyses and X-ray photoelectron spectroscopy studies together with the theoretical band structures, density of states, and electron wave functions.

8.
Biochem Biophys Res Commun ; 616: 8-13, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35636257

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provoked a pandemic of acute respiratory disease, namely coronavirus disease 2019 (COVID-19). Currently, effective drugs for this disease are urgently warranted. Anisodamine is a traditional Chinese medicine that is predicted as a potential therapeutic drug for the treatment of COVID-19. Therefore, this study aimed to investigate its antiviral activity and crucial targets in SARS-CoV-2 infection. SARS-CoV-2 and anisodamine were co-cultured in Vero E6 cells, and the antiviral activity of anisodamine was assessed by immunofluorescence assay. The antiviral activity of anisodamine was further measured by pseudovirus entry assay in HEK293/hACE2 cells. Finally, the predictions of crucial targets of anisodamine on SARS-CoV-2 were analyzed by molecular docking studies. We discovered that anisodamine suppressed SARS-CoV-2 infection in Vero E6 cells, and reduced the SARS-CoV-2 pseudovirus entry to HEK293/hACE2 cells. Furthermore, molecular docking studies indicated that anisodamine may target SARS-CoV-2 main protease (Mpro) with the docking score of -6.63 kcal/mol and formed three H-bonds with Gly143, Cys145, and Cys44 amino acid residues at the predicted active site of Mpro. This study suggests that anisodamine is a potent antiviral agent for treating COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Proteases 3C de Coronavírus , SARS-CoV-2 , Alcaloides de Solanáceas , Antivirais/química , Antivirais/farmacologia , COVID-19/virologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/efeitos dos fármacos , Proteases 3C de Coronavírus/metabolismo , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , Alcaloides de Solanáceas/farmacologia , Proteínas não Estruturais Virais/química
9.
Microb Cell Fact ; 21(1): 12, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090444

RESUMO

BACKGROUND: Polysaccharides are important active ingredients in Ophiocordyceps gracilis with many physiological functions. It can be obtained from the submerged fermentation by the anamorph (Paraisaria dubia) of Ophiocordyceps gracilis. However, it was found that the mycelial pellets of Paraisaria dubia were dense and increased in volume in the process of fermentation, and the center of the pellets was autolysis due to the lack of nutrient delivery, which extremely reduced the yield of polysaccharides. Therefore, it is necessary to excavate a fermentation strategy based on morphological regulation for Paraisaria dubia to promote polysaccharides accumulation. RESULTS: In this study, we developed a method for enhancing polysaccharides production by Paraisaria dubia using microparticle enhanced technology, talc microparticle as morphological inducer, and investigated the enhancement mechanisms by transcriptomics. The optimal size and dose of talc were found to be 2000 mesh and 15 g/L, which resulted in a high polysaccharides yield. It was found that the efficient synthesis of polysaccharides requires an appropriate mycelial morphology through morphological analysis of mycelial pellets. And, the polysaccharides synthesis was found to mainly rely on the ABC transporter-dependent pathway revealed by transcriptomics. This method was also showed excellent robustness in 5-L bioreactor, the maximum yields of intracellular polysaccharide and exopolysaccharides were 83.23 ± 1.4 and 518.50 ± 4.1 mg/L, respectively. And, the fermented polysaccharides were stable and showed excellent biological activity. CONCLUSIONS: This study provides a feasible strategy for the efficient preparation of cordyceps polysaccharides via submerged fermentation with talc microparticles, which may also be applicable to similar macrofungi.


Assuntos
Polissacarídeos Fúngicos/biossíntese , Hypocreales/metabolismo , Reatores Biológicos , Vias Biossintéticas , Meios de Cultura , Fermentação , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Hypocreales/citologia , Hypocreales/genética , Micélio/citologia , Tamanho da Partícula , Talco
10.
Appl Biochem Biotechnol ; 194(10): 4333-4347, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35083705

RESUMO

Liquid submerged fermentation is an effective strategy to achieve large-scale production of active ingredients by macrofungi, and controlling mycelium morphology is a key factor restricting the development of this technology. Mining for superior morphological regulatory factors and elucidation of their regulatory mechanisms are vital for the further development of macrofungal fermentation technology. In this study, microparticles were used to control the morphology of Paraisaria dubia (P. dubia) in submerged fermentation, and the underlying regulatory mechanisms were revealed by transcriptomic. The relative frequency of S-type pellet diameter increased significantly from 7.14 to 88.31%, and biomass increased 1.54 times when 15 g/L talc was added. Transcriptome analysis showed that the morphological regulation of filamentous fungi was a complex biological process, which involved signal transduction, mycelium polar growth, cell wall synthesis and cell division, etc. It also showed a positive impact on the basic and secondary metabolism of P. dubia. We provided a theoretical basis for controlling the mycelium morphology of P. dubia in submerged fermentation, which will promote the development of macrofungal fermentation technology.


Assuntos
Hypocreales , Talco , Fermentação , Perfilação da Expressão Gênica , Micélio , Talco/metabolismo , Transcriptoma
11.
Inorg Chem ; 61(1): 406-413, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34931819

RESUMO

Using in situ formed metal complexes of [Fe(bipy)3]2+ or [Ni(bipy)3]2+ (bipy = 2,2'-bipyridine) as templates, four new Ag-Bi-X (X = I and Br) compounds are first isolated in the metal-complex-decorated heterometallic halobismuthate family, namely [M(bipy)3]AgBiI6 (M = Fe (1), Ni (2)), [Fe(bipy)3]AgBiBr6 (3), and [Ni(bipy)3]AgBiBr6 (4). Compounds 1-4 feature discrete [AgBiX6]n2n- anions, exhibiting three polymorphisms that may be ascribed to the different stackings and the flexible condensations of [BiX6] octahedrons and [AgX4] tetrahedra/[AgX3] triangles. UV-vis diffuse reflectance analyses reveal that they are narrow band gap semiconductor materials (ca. 1.82-2.13 eV). Intriguingly, the title compounds display excellent photoelectrical switching properties, with photocurrent density following the order 3 > 4 > 2 > 1. In addition, the comparative studies of intermolecular interactions, theoretical band structures, density of states, and effective masses of three polymorphisms have also been investigated.

12.
J Asian Nat Prod Res ; 24(3): 203-230, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34253101

RESUMO

Secondary metabolites generated by marine fungi have relatively small molecular weights and excellent activities and have become an important source for developing drug lead compounds. The review summarizes the structures of novel small-molecule compounds derived from marine fungi in recent years; introduces representative monomers in antimicrobial, antitumor, anti-viral, and anti-neuritis aspects; and discusses their biological activities and molecular mechanisms. This review will act as a guide for further discovering marine-derived drugs with novel chemical structures and specific targeting mechanisms.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Antibacterianos , Fungos , Estrutura Molecular
13.
Ann Transl Med ; 9(19): 1503, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34805365

RESUMO

OBJECTIVE: We aimed at comprehensively analyzing ferroptosis regulation and its potential role in the treatment of associated diseases. BACKGROUND: Ferroptosis is a recently discovered form of cell death that involves small molecule-induced oxidative cell death. This process is usually accompanied by large amounts of iron accumulation and lipid peroxidation. Ferroptosis inducers directly or indirectly affect glutathione peroxidase (GPXs) through different pathways. Disturbances in GPXs result in suppressed cellular antioxidant capacities, accumulation of lipid reactive oxygen species (ROS) and oxidative cell death. It has been reported that ferroptosis is closely associated with the pathophysiological processes of many diseases, including tumors, nervous system diseases, ischemia-reperfusion injury, kidney injury and iron metabolism diseases among others. METHODS: First, we reviewed the mechanisms of ferroptosis, with emphasis on the characteristics and functions of ferroptosis in multiple pathways. Then, inducers and inhibitors of ferroptosis were reviewed, and their mechanisms of action elucidated. Finally, ferroptosis-associated pathophysiological processes of various diseases were reviewed. CONCLUSIONS: Ferroptosis is associated with the occurrence and development of various diseases. Elucidation of the mechanisms involved in ferroptosis will inform new therapeutic targets and strategies for these diseases.

14.
Addiction ; 113(11): 2073-2086, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30003630

RESUMO

BACKGROUND AND AIMS: Cannabis is one of the most commonly used substances among adolescents and young adults. Earlier age at cannabis initiation is linked to adverse life outcomes, including multi-substance use and dependence. This study estimated the heritability of age at first cannabis use and identified associations with genetic variants. METHODS: A twin-based heritability analysis using 8055 twins from three cohorts was performed. We then carried out a genome-wide association meta-analysis of age at first cannabis use in a discovery sample of 24 953 individuals from nine European, North American and Australian cohorts, and a replication sample of 3735 individuals. RESULTS: The twin-based heritability for age at first cannabis use was 38% [95% confidence interval (CI) = 19-60%]. Shared and unique environmental factors explained 39% (95% CI = 20-56%) and 22% (95% CI = 16-29%). The genome-wide association meta-analysis identified five single nucleotide polymorphisms (SNPs) on chromosome 16 within the calcium-transporting ATPase gene (ATP2C2) at P < 5E-08. All five SNPs are in high linkage disequilibrium (LD) (r2  > 0.8), with the strongest association at the intronic variant rs1574587 (P = 4.09E-09). Gene-based tests of association identified the ATP2C2 gene on 16q24.1 (P = 1.33e-06). Although the five SNPs and ATP2C2 did not replicate, ATP2C2 has been associated with cocaine dependence in a previous study. ATP2B2, which is a member of the same calcium signalling pathway, has been associated previously with opioid dependence. SNP-based heritability for age at first cannabis use was non-significant. CONCLUSION: Age at cannabis initiation appears to be moderately heritable in western countries, and individual differences in onset can be explained by separate but correlated genetic liabilities. The significant association between age of initiation and ATP2C2 is consistent with the role of calcium signalling mechanisms in substance use disorders.


Assuntos
Idade de Início , ATPases Transportadoras de Cálcio/genética , Uso da Maconha/genética , Adolescente , Adulto , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Gêmeos/genética , Adulto Jovem
15.
Huan Jing Ke Xue ; 37(5): 1692-8, 2016 May 15.
Artigo em Chinês | MEDLINE | ID: mdl-27506021

RESUMO

In order to quantitatively identify sources of nitrate pollution in Beijing urban area and provide effective guidance for relevant departments to control the pollution of Beijing rivers, δ¹5N-NO3⁻ and δ¹8O-NO3⁻ isotope tracing method was used to analyze the composition of nitrogen and oxygen stable isotopes from nitrate in Beijing urban river. Besides, stable isotope mixing model was adopted to track nitrogen sources of nitrate in Beijing urban rivers and the contribution rates of respective pollution sources were evaluated. The results showed that: (1) NO3⁻-N pollution was the main inorganic nitrogen pollution in Beijing rivers and pollution of downstream was more serious than that of upstream. (2) δ¹5N-NO3⁻ in Beijing urban surface rivers was in range of 6.26 per thousand-24.94 per thousand, while δ¹8O-NO3⁻ ranged -0.41 per thousand-11.74 per thousand; δ¹5N-NO3⁻ increased from upstream to downstream along the flow of the surface water. (3) The nitrate pollution composition of Beijing rivers could be gained from the stable isotope mixing model. The average contribution rates of manure and sewage, soil nitrate and atmospheric deposition were 61.2%, 31.5% and 7.3%, respectively.


Assuntos
Monitoramento Ambiental , Nitratos/análise , Isótopos de Nitrogênio/análise , Isótopos de Oxigênio/análise , Rios/química , Poluentes Químicos da Água/análise , Pequim , Esterco , Modelos Teóricos , Esgotos , Solo
16.
Immunity ; 41(4): 620-32, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25367575

RESUMO

Pathobionts play a critical role in disease development, but the immune mechanisms against pathobionts remain poorly understood. Here, we report a critical role for interleukin-22 (IL-22) in systemic protection against bacterial pathobionts that translocate into the circulation after infection with the pathogen Clostridium difficile. Infection with C. difficile induced IL-22, and infected Il22(-/-) mice harbored high numbers of pathobionts in extraintestinal organs despite comparable pathogen load and intestinal damage in mutant and wild-type mice. Pathobionts exhibited increased resistant against complement-mediated phagocytosis, and their intravenous administration resulted in high animal mortality. Selective removal of translocated commensals rescued Il22(-/-) mice, and IL-22 administration enhanced the elimination of pathobionts. Mechanistically, IL-22 augmented bacterial phagocytosis by increasing the expression and bacterial binding of complement C3. Our study demonstrates an unexpected role for IL-22 in controlling the elimination of pathobionts that enter the systemic circulation through the regulation of the complement system.


Assuntos
Clostridioides difficile/imunologia , Complemento C3/imunologia , Enterocolite Pseudomembranosa/imunologia , Interleucinas/imunologia , Intestinos/microbiologia , Animais , Complemento C3/biossíntese , Venenos Elapídicos/farmacologia , Enterobacteriaceae/crescimento & desenvolvimento , Enterocolite Pseudomembranosa/mortalidade , Interleucinas/genética , Intestinos/lesões , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota/imunologia , Fagocitose/imunologia
17.
J Immunol ; 189(6): 3085-91, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22888139

RESUMO

Clostridium difficile is a Gram-positive obligate anaerobic pathogen that causes pseudomembranous colitis in antibiotic-treated individuals. Commensal bacteria are known to have a significant role in the intestinal accumulation of C. difficile after antibiotic treatment, but little is known about how they affect host immunity during C. difficile infection. In this article, we report that C. difficile infection results in translocation of commensals across the intestinal epithelial barrier that is critical for neutrophil recruitment through the induction of an IL-1ß-mediated positive-feedback loop. Mice lacking ASC, an essential mediator of IL-1ß and IL-18 processing and secretion, were highly susceptible to C. difficile infection. ASC(-/-) mice exhibited enhanced translocation of commensals to multiple organs after C. difficile infection. Notably, ASC(-/-) mice exhibited impaired CXCL1 production and neutrophil influx into intestinal tissues in response to C. difficile infection. The impairment in neutrophil recruitment resulted in reduced production of IL-1ß and CXCL1 but not IL-18. Importantly, translocated commensals were required for ASC/Nlrp3-dependent IL-1ß secretion by neutrophils. Mice lacking IL-1ß were deficient in inducing CXCL1 secretion, suggesting that IL-1ß is the dominant inducer of ASC-mediated CXCL1 production during C. difficile infection. These results indicate that translocated commensals play a crucial role in CXCL1-dependent recruitment of neutrophils to the intestine through an IL-1ß/NLRP3/ASC-mediated positive-feedback mechanism that is important for host survival and clearance of translocated commensals during C. difficile infection.


Assuntos
Clostridioides difficile/imunologia , Enterocolite Pseudomembranosa/imunologia , Enterocolite Pseudomembranosa/prevenção & controle , Interleucina-1beta/fisiologia , Simbiose/imunologia , Regulação para Cima/imunologia , Animais , Transporte Biológico Ativo/genética , Transporte Biológico Ativo/imunologia , Comunicação Celular/imunologia , Permeabilidade da Membrana Celular/genética , Permeabilidade da Membrana Celular/imunologia , Enterocolite Pseudomembranosa/patologia , Mucosa Gástrica/imunologia , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Interleucina-1beta/biossíntese , Interleucina-1beta/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/microbiologia , Neutrófilos/patologia , Análise de Sobrevida , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...